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Hybrid porous Helmholtz resonator for low-frequency broadband absorption

Zihao Su®,' Qing Wang,? Ze-Guo Chen®,"*" and Ming-Hui Lu"-3#
'School of Materials Science and Intelligent Engineering, Nanjing University, Suzhou 215163, China
> School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
* National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China

! College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China

® (Received 4 June 2024; revised 27 August 2024; accepted 19 September 2024; published 11 October 2024)

The effective control of low-frequency noise remains a formidable challenge due to the inherently
long wavelengths involved, which typically require large-scale physical barriers to achieve meaningful
attenuation. Against this backdrop, metamaterials present a viable alternative, exploiting deep subwave-
length structures that capitalize on thermal losses associated with local resonances to dampen sound.
Here, we introduce a hybrid porous Helmholtz resonator (HPHR) that markedly improves acoustic absorp-
tion by amalgamating the Helmholtz resonator with specially designed porous necks to optimize acoustic
impedance matching. It is promising as the basic unit of the metamaterial for low-frequency broadband
acoustic absorption. Based on parallel HPHRs, we expand the effective absorption (>0.8) bandwidth using
a one-dimensional convolutional neural network to engineer composite structures. The thickness of the
sample is approximately 1/13th of the wavelength at the lowest target frequency. Our designs integrate
resonant structures and porous materials, providing promising potential for creating broadband acoustic

absorption systems and low-frequency noise control.
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I. INTRODUCTION

The pervasive issue of low-frequency noise pollution
significantly impacts urban and industrial environments,
affecting human health and productivity. Traditional noise-
mitigation strategies, such as large-scale barriers or porous
materials [ 1-4], are often impractical due to their size, cost,
and limited effectiveness at low frequencies under the con-
straints of the mass density law [5,6]. Metamaterials have
offered unparalleled opportunities for sound manipulation
at dimensions significantly smaller than the wavelength of
the sound [7—10]. For instance, effective acoustic absorp-
tion using decorated membranes [11-13], Helmholtz
resonator (HR) [14-18], and Fabry-Perot resonator
[19-21] have been proposed. The HR stands out among
various units due to its ample tunable parameters and
degrees of freedom. To enhance the acoustic absorption
of the HR, sophisticated designs are applied to the neck
of the HR, e.g., the roughness will hinder the flow of the
fluid in the neck, resulting in energy damping and dissi-
pation [22—24]. Meanwhile, porous materials, inherently
characterized by their roughness and viscosity, have also
garnered renewed attention for their ability to dampen
sound. It is an ideal candidate for improving metamate-
rial performance without altering the geometric parameters
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[25-28]. Recently, applying porous linings within the HR
cavity has shown significant absorption properties [29—32].
Given that the neck is a primary site for energy dissipa-
tion, incorporating porous materials directly into the neck
is a promising and more cost-effective approach. To date,
this method’s feasibility has not been experimentally ver-
ified. This study introduces a hybrid porous Helmbholtz
resonator (HPHR), which enhances traditional HR designs
by incorporating a porous rectangular embedded neck. A
refined theoretical model and complex frequency-plane
analysis [33] elucidate the absorption improvements from
impedance matching provided by the porous neck. Finite-
element simulations support this finding.

Considering the nonlocal effects [34-36] that couple the
adjacent units will bring another perspective to achieve
broadband acoustic absorption, in which the design of
each unit is neighbor dependent. Thus, utilizing nonlocal
effects requires complex parameter sets. In this study, we
developed a broadband acoustic metamaterial absorber uti-
lizing parallel HPHRs that was optimized by deep learning.
Kaleidoscopic structural designs in metamaterials allow
for precise acoustic property control, offering alternative
solutions for noise pollution across various settings. The
deep-learning (DL) method is a powerful computational
tool for efficiently addressing a wide range of scientific
challenges, including in metamaterials [37—41]. By utiliz-
ing trained deep-learning models, it is possible to uncover
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the underlying relationships between the structural param-
eters and performance, enabling the inverse design of
broadband acoustic absorbing metamaterials [41,42]. The
convolutional neural network (CNN) is a deep-learning
model that efficiently extracts spatial features through the
mechanisms of local receptive fields and weight shar-
ing. We use a CNN to process the dataset generated via
the finite-element method to correlate acoustic absorption
spectra with structural configurations, allowing reverse
engineering from the target absorption spectrum. Experi-
mental results confirm the efficacy of this method, achiev-
ing broadband absorption at the target spectrum, with a
material thickness around 1/13th of the wavelength at the
lowest target frequency. This innovative integration marks
a significant advancement in low-frequency-noise control
strategies.

II. THEORETICAL MODEL AND NUMERICAL
SIMULATION

To contextualize the practical applications delineated
above within fundamental acoustical theory, a discussion
of the interaction between acoustic waves and a material,
quantified by acoustic impedance, is pertinent. Typically,
acoustic impedance describes how the material reacts to
external acoustic excitation. The absorption coefficient,
«, of an acoustic metamaterial under normal incidence is
calculated as follows:

a=1-|RP=1- : (1)

where R = (Zy — Zy)/(Zy + Zp) is the reflection coeffi-
cient, Zy is the acoustic impedance of the metamaterial,
and Zy = poco is the characteristic impedance of the air.
The density of air, py, is 1.21 kg/m?, and the speed of
sound in air, ¢g, is 343 m/s. Equation (1) reveals that
perfect absorption can be achieved when matched by the
impedance of the metamaterial and air. This principle
underpins the engineering of acoustic materials, where
precise control of impedance is crucial for optimizing
absorption performance.

Figure 1(a) depicts the proposed HPHR integrating
sponges and a Helmholtz resonator, where the neck of the
resonator is embedded. In the case of the HPHR described,
the integration of sponges within the resonator is a strate-
gic modification aimed at enhancing impedance matching,
and thus, acoustic absorption. The dimensions are detailed
in Fig. 1(b). It illustrates the unit as a cuboid with width
W, depth D, height H, and total volume of the unit of V;, =
W x D x H.The width of the neck is w, and its length is L.
The wall thickness is represented by ¢, and d is the width of
the air slit between the sponges. ¢, = d/w is the porosity
of the air slit. To analyze the behavior of acoustic waves
within the neck, the bulk modulus, K,,, and density, p,,

of the porous materials are evaluated using the Johnson-
Champoux-Allard (JCA) model of five parameters. The
JCA model employs homogeneous material parameters to
effectively characterize the behavior of sound-wave prop-
agation within the porous medium [43]. The parameters
of the porous material are shown in Table I. Employing
effective-medium theory, we derive the effective parame-
ters for the neck [44] schematically in Fig. 1(c), providing a
comprehensive depiction of how the neck’s material com-
position influences the overall acoustic characteristics of
the HPHR. This theoretical approach allows us to model
the acoustic impedance of the porous neck by treating it as
a homogeneous medium with effective properties.

The acoustic impedance of the neck can be calculated
similarly to that of microperforated panels [44]. Consider-
ing the terminal effects of the porous neck, the modified
formula for calculating the acoustic impedance of HPHR
is as follows [45]:

Zy=

1 /129, . 1 e
—|—FK- oL+ —jFwp.d)| — )

cls (2w, +ronL+ yFona) - 120
(2)

where ¢ = DW/(D — 2t)(W — 2¢) is the acoustic imped-
ance correction factor, considering the thickness of the
unit wall; 8y = w/(W — 2¢) is the perforation ratio of the
face sheet. 7 =1.983 x 107> Pas is the dynamic viscos-
ity of air, K, = k + Y22" and B = ¥ \/wp./n. /2Bw/ 121
and (1/2)jFwp.d are the correction terms caused by the
end-sound radiation. The last term in square brackets is
the impedance of the cavity. w = 2nf is the angular
frequency. p, is the effective parameter of the neck elab-
orated in the Supplemental Material [44]. j = v/—1 is the
imaginary unit. F' is the full elliptic integral of the first
kind, which is relative to the ratio of w and (D — 21).
S = (D —20)(W —2f) is the area of the face sheet; V =
D =20[(W—=20(H — 2t) — (w+ 2 (L — 1)] is the cav-
ity volume after subtracting the neck volume from the unit
volume.

To validate the above theoretical model, we employ the
finite-element method using COMSOL Multiphysics. Since
the thermoviscous losses occur in the porous materials
[44], the “pressure acoustics, frequency domain” mod-
ule is applied to the entire unit. The porous materials
are characterized in the “poroacoustics domain” by the
JCA model. The unit’s dimensions are 50 mm for both
width W and depth D, with a height (H) of 52 mm,
and a wall thickness () of 1 mm. For the neck, the
length of the neck is L=30 mm, and w=4 mm. ¢;
takes values of 0.5, 0.625, 0.75, and 1. Figure 1(d)
illustrates the absorption coefficient of the HPHR. The
absorption coefficient declines gradually with an increase
of ¢;, which is due to the decrease of thermal viscos-
ity loss in the neck after the thickness of the sponge
decreases. When ¢, = 1, the HPHR changes to a normal
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FIG. 1. (a) Schematic diagram of a hybrid porous Helmholtz resonator. (b) Dimensions and cross section in the x-axis direction of

the HPHR. Sound wave is incident vertically on the face sheet. Material properties are labeled in the figure. (c) Effective-medium
distribution in the HPHR. (d) Acoustic absorption coefficient and complex frequency-plane analysis for the HPHR under different ¢.
(e) Low-frequency absorption coefficients of the HPHR with various neck dimensions.

Helmholtz resonator. To simulate the absorption coeffi-
cient of Helmholtz resonators, the “acoustic-thermovisous
acoustic interaction, frequency domain” module is uti-
lized. Then, we adopt complex frequency-plane analysis to
reveal the damping state of the HPHR intuitively [33]. For
s =0.5, the zero point is located at the real axis [Im(f")
is 0], which means that energy leakage of the system
is balanced by the losses, consistent with the quasiper-
fect absorption. As the damping of the neck drops, the
zero point and pole point shift down together. When the
medium in the neck is just air (¢, =1), the Helmholtz
resonator displays poor absorption due to insufficient

TABLE 1. Acoustic parameters of the porous material
(melamine foam).

oo ¢ o (Ns/m*) A (pm) A’ (pm)
1.0059 0.995 10500 240 470

energy dissipation. The results demonstrate the contri-
bution of the porous structure on quasiperfect absorp-
tion, associated with acoustic impedance matching through
modifying the damping state of the system [44].

The above results demonstrate that a porous neck is
promising to reduce the resonant frequency while enhanc-
ing the system’s energy loss to get a higher absorption
coefficient. This adjustment implies that the HPHR has
a better acoustic performance at lower frequencies com-
pared to traditional Helmholtz resonators with the same
thickness. To achieve efficient sound absorption across the
low-frequency spectrum, we investigate HPHRs with vary-
ing neck dimensions (w varies from 4 to 12 mm in 2 mm
increments, and L is adjusted from 30 to 10 mm in steps
of —5 mm) with fixed ¢; = 0.5. The theoretical and sim-
ulation results, as illustrated in Fig. 1(e), demonstrate the
HPHR’s effective absorption in the low-frequency range,
highlighting the critical role of the design parameters in
achieving desired acoustic outcomes.
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II1. BROADBAND DESIGN AND EXPERIMENTAL
DEMONSTRATION

To achieve broadband acoustic absorption, we develop
a composite absorption structure comprising four paral-
lel HPHRs, as illustrated in Fig. 2(a). Considering the
design feasibility, each HPHR maintains an identical vol-
ume (V,) and ¢, but varied w and L of the necks.

The acoustic-electric analogy clarifies the role of each
component in the HPHR for incident acoustic waves.
It realizes nonlocal-resonance sound absorption by the
coupling effect between adjacent unit cells. Determining
the optimal combination of parameters across the four
HPHRs increases the computational complexity. A more
sophisticated method is required to efficiently navigate
the vast parameter space and ensure that the final design
achieves the desired acoustic performance. The application

of advanced computational tools, like deep learning, is
indispensable for finding the most suitable parameter set in
low-frequency broadband absorption [46]. Among various
deep-learning architectures, such as the CNN, the recur-
rent neural network (RNN), and transformers [47—49], the
CNN is particularly effective due to its ability to extract
features from complex datasets at a lower computational
cost and faster speed [42,50,51]. In this context, we pro-
pose to employ a one-dimensional (1D) CNN to design
the absorbing structures inversely from the target acous-
tic absorption curve. The model is depicted in Fig. 2(b). It
aims to establish the mapping between geometric parame-
ters L, and the features of the sound-absorption spectrum.
This approach will allow for direct mapping from the
desired acoustic performance to the optimal parameter set,
bypassing the limitations posed by traditional theoretical
and numerical methods [41]. The model incorporates a
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FIG. 2.

(b) 1D-CNN model for inverse design of the acoustic metamaterial.
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maximum pooling layer following each 1D-CNN layer to
reduce computational load and improve model generaliza-
tion. The maximum pooling layer slides over the input
data, selecting the maximum value within each window
for output. The activation function is a leaky rectified lin-
ear unit (LRLU) in the CNN architectures. After feature
extraction in CNN blocks, the fully connected layer (FCL)
identifies features after the flatten operation. It obtains the
associations between features and finally maps them onto
the output space. To mitigate overfitting, a dropout oper-
ation is introduced within the FCLs. It reduces the inter-
actions between features, thereby minimizing local feature
dependency and enhancing the model’s generalizability.
To ensure the quality of the dataset and prevent redun-
dancy, the neck widths w—wy are fixed to 6, 8, 10, and

TABLE II.  Part predictions of structures based on CNN.

Ly (mm) L (mm) L3 (mm) L4 (mm)
Prediction1(Prel) 4.92 12.53 30.31 8.28
Prediction2(Pre2) 2.72 11.51 26.95 8.71
Prediction3(Pre3) 4.43 11.2 25.97 13.35

12 mm. The neck lengths L,—L, are treated as labels and
represented as structural vectors L = (Ly, Ly, L3, Ls). The
acoustic absorption spectrum is encoded as 4 = (o, oy,
..., a71), covering frequencies from 200 to 900 Hz in steps
of 10 Hz. A total of 10 000 pairs of absorption spectra and
structural vectors constitute the dataset. We allocate 70%
of the dataset for training and 30% for testing. The model
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FIG. 3. (a) Target acoustic absorption spectrum. (b) Loss curves (E) and R? coefficients of train and test sets. (c) Experimental setup

of the SZDY R-Tube 100-mm impedance tube testing system. (d) Sound-absorption coefficient of porous materials. (¢) Photograph of
the 3D-printed specimen and its inner structure. (f) Simulated (green dotted lines) and measured (purple circles) acoustic absorption
coefficients of the optimized composite absorption structure. Inset shows a top view of a 3D-printed specimen.
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is implemented on the Anaconda3 platform using PYTHON
version 3.7 and it employs the Keras framework with the
TensorFlow backend. The target absorption spectrum, as
shown in Fig. 3(a), is inputted into the model to assess
the CNN model’s performance, aiming for an absorption
coefficient above 0.8 between 490 and 850 Hz (about 0.8
octave). Figure 3(b) presents R? coefficients and the loss
function mean squared error (MSE) curves. The coefficient
of determination, R?, is used to evaluate the performance
of our model:

PN AN A%

R=1- —,
Z,(YI_YI)

3)

where Y; denotes the network output, f/, denotes the cor-
responding label, and ¥; denotes the average value of the
corresponding label. R? is a number between 0 and 1 that
measures how well a statistical model predicts an outcome.
The better a model is at making predictions, the closer its
R? will be to 1. The loss-function E is used as an objective
function to minimize the difference between the output and
the set of labels:

E=—Y (-1, )

where m denotes the number of samples. As the E
decreases, the absorption spectrum of the optimized struc-
ture increasingly aligns with the target value, indicating
improved predictive performance of the model. After 200
epochs, R? coefficients for training and testing are finally
stabilized above 0.95 with the significant decay of E,
demonstrating satisfactory performance and high accuracy
of the model. Parts from the predictions are displayed in
Table II.

Based on predictions, we perform an experimental val-
idation and compare it with the finite-element results. As
a comparative validation, we first measured the melamine
foam to demonstrate the superiority of the structure in
low-frequency acoustic performance. The thickness of the
foam is 52 mm, and the cross section is 100 x 100 mm?.
The experimental tests are conducted using the SZDY R-
Tube 100-mm impedance tube testing system, as shown
in Fig. 3(c). The tests cover a frequency range from 200
to 900 Hz. The absorption coefficient of melamine foam
is shown in Fig. 3(d). Compared with the finite-element
method (FEM) result, the measurement shows a slight
deviation. This may be due to the inhomogeneity of the
melamine foam parameters induced by machining error. In
addition, the force applied to the sample during the test can
also change the parameters of the melamine foam, affecting
the sound-absorption measurements.

Three optimized composite absorption structures are
fabricated via three-dimensional (3D) printing for
experimental validation. The size of the sample is

100 x 100 x 52 mm?. The schematic of the internal struc-
ture is depicted in Fig. 3(e). Melamine foam is glued to the
neck of HPHRs. The results, presented in Fig. 3(f), display
minimal deviation between experimental and FEM ones.
Experimental measurements validate our design approach
to a large extent. Three samples achieve broadband absorp-
tion exceeding 0.8 near the target spectrum, confirming the
design’s effectiveness and its robust low-frequency broad-
band absorption capability. The thickness of the samples
is approximately 1/13th of the wavelength at the lowest
target frequency. We further investigated the oblique inci-
dence at angles less than 40° [44], and the absorption
performance remained robust. Furthermore, we conducted
a simulation study on the sound-absorption characteris-
tics of the optimized structure in a lower-frequency range
(350-510 Hz), and the results also validated the effective-
ness of our HPHR model [44].

IV. CONCLUSIONS

We propose a HPHR that integrates porous materials
into the neck, thereby modifying and tuning the effective
acoustic parameters of the resonator. The sound absorp-
tion performance of the HPHR is investigated through
theoretical analysis and FEM simulations. By adjusting
the proportion of porous material in the neck, efficient
low-frequency acoustic absorption can be achieved with-
out altering the physical dimensions of the metamaterial.
This approach significantly enhances the acoustic absorp-
tion capabilities of the system. Additionally, we designed a
composite absorption structure based on parallel HPHRs,
which was optimized using a 1D CNN. This design
yields robust and efficient sound absorption across the tar-
get broadband spectrum, achieving absorption efficiencies
exceeding 0.8 within the desired bandwidth. The thickness
of this composite structure is approximately 1/13th of the
wavelength at the lowest target frequency. This work high-
lights the potential of the HPHR to advance broadband
structural design at subwavelength scales with improved
low-frequency noise control.

Data that support the findings of this study are available
from the corresponding author upon reasonable request.
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