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Improving the Readability of 
Time-Frequency and Time-Scale 

Representations by the Reassignment Method 
Franqois Auger, Member, IEEE, and Patrick Flandrin, Member, IEEE 

Abstruct-In this paper, the use of the reassignment method, 
first applied 15 years ago by Kodera, Gendrin, and de Villedary to 
the spectrogram, is generalized to any bilinear time-frequency or 
time-scale distribution. This method creates a modified version 
of a representation by moving its values away from where 
they are computed, so as to produce a better localization of 
the signal components. We first propose a new formulation of 
this method, followed by a thorough theoretical study of its 
characteristics. Its practical use for a large variety of known 
time-frequency and time-scale distributions is then addressed. 
Finally, some experimental results are reported to demonstrate 
the performance of this method. 

I. INTRODUCTION 
IME-FREQUENCY or time-scale representations are T more and more widely used for nonstationary signal 

analysis. They perform a mapping of a one-dimensional signal 
~ ( t )  into a two-dimensional function of time and frequency 
TFR(x; t ,w)  or time and scale T S R ( q t , a ) ,  in order to 
extract relevant informations. Among these, the spectrogram 
[l], [2] is probably one of the earliest, and still one of the 
most commonly used today. Nevertheless, the spectrogram 
has severe drawbacks, both theoretically, since it provides 
biased estimators of the signal instantaneous frequency and 
group delay, and practically, since the Gabor-Heisenberg 
inequality [ 11 makes a tradeoff between temporal and spectral 
resolutions unavoidable. 

To overcome these important shortcomings, other non- 
stationary signal representations have been proposed among 
the Cohen's class [3], [4] of bilinear time-frequency energy 
distributions. The Wigner-Ville distribution [5], 161, the Mar- 
genau-Hill distribution [7], their smoothed versions [8]-[ l l], 
and many others with reduced cross-terms [ 121-[ 151 are mem- 
bers of this class. Nearly at the same time, some authors also 
proposed other time-varying signal analysis tools based on a 
concept of scale rather than frequency, such as the scalogram 
[ 161, [ 171 (the squared modulus of the wavelet transform), the 
affine smoothed pseudo Wigner-Ville distribution [ 181 or the 
Bertrand distribution [19]. The theoretical properties and the 
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application fields of this large variety of existing methods are 
now well determined, and wide-spread [8], [20]-[24]. 

Nevertheless, a critical point of these methods is their read- 
ability, which means both a good concentration of the signal 
components and no misleading interference terms. This char- 
acteristic is necessary for an easy visual interpretation of their 
outcomes and a good discrimination between known patterns 
for nonstationary signal classification tasks. For an appropriate 
readability, one must first choose a representation whose 
interference geometry matches the signal structure [25], and 
then correctly adjust its parameters, either empirically (with 
some a priori knowledge of the signal) or using automatic 
procedures [26]. But one may further improve the readability 
of a representation by means of an appropriate processing. This 
methodology has been addressed recently by different authors. 
Some of them [27]-[29] proposed to decompose the signal into 
elementary components, and to use the sum of the component 
representations as the signal representation. Others [30]-[32] 
perform a modification of the signal representation using 
image processing techniques. But this was also the purpose 
of the Modified Moving Window Method [33], [34] proposed 
by Kodera, Gendrin, and de Villedary 15 years ago. They 
suggested a clever modification of the spectrogram, which un- 
fortunately remained unused because of implementation diffi- 
culties and because its efficiency was not proved theoretically. 

The purpose of this paper is to show that the method they 
used, which will be called here the reassignment method, can 
be applied advantageously to all the bilinear time-frequency 
and time-scale representations, and can be easily computed for 
the most common ones. The organization of this paper is as 
follows: in Section 11, we briefly present a new formulation of 
the reassignment method. Some of the properties of the result- 
ing modified representations are also demonstrated. Section I11 
addresses the use of this method for some well-known time- 
frequency representations, and Section IV for some time-scale 
representations. Finally, Section V provides some numerical 
examples demonstrating the efficiency of this method. 

11. THE REASSIGNMENT METHOD 

A. Presentation of the Reassignment Method 

Wigner-Ville distribution (WVD) [5], [6], defined as 
Among all the bilinear time-frequency distributions, the 

WV ( E ;  t , w )  = ~ ( t  + r / 2 )  1 x*(t - r/2)e-jw' d r  (1) J 
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is one of the most interesting. In order to clarify our demonstra- 
tion, we will first concentrate on this distribution. It possesses 
a high resolution in the time-frequency plane, and satisfies 
a large number of desirable theoretical properties [8], [20], 
[21]. Unfortunately, its use in practical applications is limited 
by the presence of nonnegligible cross-terms, resulting from 
interactions between signal components. These cross-terms 
may lead to an erroneous visual interpretation of the signal’s 
time-frequency structure, and are also a hindrance to pattern 
recognition, since they may overlap with the searched time- 
frequency pattern. 

Nevertheless, they can often be reduced while preserving 
the time and frequency shift invariance property (and possibly 
other interesting theoretical properties) by a two-dimensional 
low-pass filtering of the WVD, leading to a time-frequency 
representation of the Cohen’s class [3], [4] which can be 
written as 

d R  
2w 

$ T F ( U ,  0) WV (x; t - U ,  w - R) du--. 

(2) 

However, this smoothing also produces a less accurate time- 
frequency localization of the signal components. Its shape and 
spread must therefore be properly determined so as to produce 
a suitable trade-off between good interference attenuation and 
good time-frequency concentration [8], [ 131, [20], [21]. Inter- 
esting examples of smoothings are the pseudo Wigner-Ville 
distribution [8], the smoothed pseudo Wigner-Ville distri- 
bution [9], and all the Reduced Interference Distributions 
[ 121-4 151. 

As a complement to this smoothing, other processings can 
be used to improve the readability of a signal representation. 
Several authors [27]-[29] proposed to decompose the analyzed 
signal into elementary components, and to use the sum of the 
component representations as the signal representation. When 
this decomposition scheme is fitted to the analyzed signal, 
a relevant description including fewer cross-terms between 
distinct components can be obtained. Others [30]-[32], [24] 
tried to recognize the interference terms by their particular 
geometry and their oscillatory structure so as to remove them, 
using mainly image processing procedures. This works fairly 
well, except when signal components and cross-terms overlap. 
A third kind of signal representation processing, to which the 
reassignment method belongs, is to perform an increase of 
the signal components concentration. This method was first 
discovered by Kodera, Gendrin and de Villedary [33], [34], 
who used it only for the spectrogram. We will present below a 
new formulation of this method, leading to its practical use for 
a large family of TFR. Its use for time-scale representations 
will be examined later in Section IV. 

The starting point of the reassignment method is (2). This 
expression shows that the value of a time-frequency repre- 
sentation at any point ( t , w )  of the time-frequency plane is 
the sum of all the terms @TF(U, 0) WV (x; t - U ,  w - R), 
which can be considered as the contributions of the weighted 
Wigner-Ville distribution values at the neighboring points 
(t - U, w - 0). TFR (2; t ,  w )  is then the average of the signal 
energy located in a domain centered on ( t , w )  and delimited 

by the essential support of $TF(U, R). This averaging leads 
to the attenuation of the oscillating cross-terms, but also a 
signal components broadening. As shown in Fig. 1, the time- 
frequency representation can hence be nonzero on a point 
( t ,  w )  where the WVD indicates no energy, if there are some 
nonzero WVD values around.. Therefore, one way to avoid 
this is to change the attribution point of this average, and to 
assign it to the center of gravity of these energy contributions, 
whose coordinates are 

&(x; t ,w)  = 
dR 

U .  $ T F ( U ,  Q) WV (2; t - U ,  w - R) dU- 2w 
d R  
2n 

$ T F ( U ,  0) wv (2; t - U ,  w - n) du- 

( 3 4  
G ( z ; t , w )  = 

d R  
R .  $ T F ( U ,  0) WV (2; t - U ,  w - R) du- 2w 

d R  
27T 

$TF(U, R) wv (x; t - U ,  w - n) dU- 

SJ 
w -  SJ’ 

(3b) 

rather than to the point ( t ,  w )  where it is computed. This 
reassignment leads to the construction of a modified version of 
this time-frequency representation, whose value at any point 
( t ’ ,w’)  is therefore the sum of all the representation values 
moved to this point: 

MTFR(2; t’, w’) = TFR (x; t ,  w)S(t’ - t ^ ( ~ ;  t ,  w ) )  11 
dw 

S(W’ - G ( x ;  t ,  w ) )  dt- 
2n (4) 

where 6 ( t )  denotes the Dirac impulse. It should be noticed that 
the aim of the reassignment method is to improve the sharpness 
of the localization of the signal components by reallocating its 
energy distribution in the time-frequency plane. Thus, when 
the representation value is zero at one point, it is useless to 
reassign it. Expressions (3a) and (3b), which will be called the 
reassignment operators, have therefore neither sense nor use 
in this case. It should be also noticed that if the smoothing 
kernel @TF ( U, 0) is real-valued, the reassignment operators 
(3a) and (3b) are also real-valued, since the WVD is always 
real-valued. 

B. Properties of the ModiJied Representation 

Some basic theoretical properties of this modified represen- 
tation can also be demonstrated: 

I )  Non Bilinearity: It should be noticed that the value at 
every point of the time-frequency representation is moved 
by means of the reassignment operators (3a) and (3b), which 
strongly depend on the signal. This causes the bilinearity to be 
lost. Therefore, the modified representation belongs no longer 
to Cohen’s class of bilinear time-frequency representations. 

2 )  Time and Frequency ShiB Property: When the signal is 
shifted in time and/or frequency, the reassignment operators 
(3a) and (3b) are shifted alike, since they mainly depend on the 
ratio of particular time-frequency representations. This implies 

. 
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that the modified version preserves the time and frequency 
shift invariance: 
if y(t) = z(t - t l )  ejwlt  
then 
and 

therefore MTFR(y;t’,w’) = MTFR(z;t’ - t1 ,w’ -  w1). 

WV (y; t ,  w ) ~ =  WV (5;  t - t l ,  w - w l )  
i ( y ; t , w )  = t ( z ; t  - t l , W  - w1) + tl 
G(y; t ,  U )  = h(z;  t - t l ,  w - w1) + w1 

( 5 )  

3)  Energy Conservation: It can also be shown that this 
energy reallocation is consistent with the energy conservation: 

// 
dR 
2n 

if // $TF(U, R) dU- = 1. 

4)  Pegectly Localized Chirps and Impulses: Finally, an- 
other interesting property of this method is that the reassign- 
ment of any representation performs a perfect localization for 
a chirp signal: 

If z ( t )  = A .  ej(wlt+at2/2) 
then 
and 

WV (2; t ,  U )  = 2nA2S(w - w1 - at) 
G(z; t ,  w )  = w1 + ai(z;  t ,  U )  

therefore MTFR (2; t’, w’)  = (// TFR (2; t ,  w )  

(7) 

and for an impulse: 

If 
then 
and 

z ( t )  = A 1 S ( t  - t i )  
WV (5; t ,  w )  = A2S(t - t l)  
i ( z ;  t ,  w )  = tl 

(8) 

These results prove the efficiency of this method, since 
however sharp or flat the representation of these signals is, 
its modified version given by expressions (3a), (3b), and (4) 
will always perfectly localize them. This is worth emphasizing, 
because there are very few known representations that have 
this property. Among the Cohen’s class for instance, it can be 
shown [23] that only the Wigner-Ville distribution perfectly 
localizes a chirp signal on its instantaneous frequency law. In 
the next section, we will show in particular cases that other 
interesting properties can be transferred from a representation 
to its modified version. 

111. APPLICATION TO SOME 
TIME-FREQUENCY REPRESENTATIONS 

In Section 11, the use of the reassignment method was 
presented for any smoothed Wigner-Ville distribution. Various 
selections of smoothing kemels $TF(U, 0) are examined in 
the following. In addition, it is well known [20] that several 

Fig. 1. Principles of the reassignment method. 

Cohen’s class members are not smoothed Wigner-Ville dis- 
tributions. For some of them, namely the smoothed Rihaczek 
distributions [35], [lo], [ 111, an appropriate implementation of 
the reassignment method will be also proposed. 

A. The Smoothed Pseudo and Pseudo 
Wiper-Ville Distributions 

Among all possible choices, the smoothed pseudo 
Wiper-Ville distribution (SPWVD) [9], [23] is one of 
the most versatile. Its separable kemel ~ T F ( U ,  R) allows the 
time and frequency smoothings to be adjusted independently: 

where g and h are two real even windows with h(0)  = G(0) = 
1. 

To implement its modified version presents no major diffi- 
culty, since the reassignment operators (3a) and (3b) can be 
computed with two additional SPWVD only: 

dR dh  
since R H ( R ) e j n T -  = - j x ( t )  s 27T 
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where D h  and 7 h  are, respectively, the operators of differen- 
tiation and multiplication by the running variable: 

d h  
d t  

Dh( t )  = h’(t) = -(t) and I h ( t )  = t * h(t) .  

From a theoretical point of view, only the bilinearity of 
the representation is lost when the modified version is used. 
It is however greatly compensated by a perfect localization 
of chirps and impulses. Fig. 2 shows the algorithm for the 
computation of the MSPWVD. Compared to the SPWVD, 
the MSPWVD mainly requires two additional Discrete Fourier 
Transforms. This representation is stored in a matrix initially 
set to zero, where the SPWVD values are added as they are 
computed. At the end of the SPWVD computation, this matrix 
finally contains the MSPWVD. 

As a particular case, the pseudo Wigner-Ville distribution 
(PWVD) [8] corresponds to no time smoothing 

$TF(U, a) = S ( u ) H ( O )  

PWVh (x; t ,  w )  = h(r)x( t  + r/2) . x*(t - T / 2 )  

(12) 
with h(0) = 1, h’(0) = 0. By lack of time-direction filtering, 
the reassignment operators are now reduced to a frequency 
displacement only, computed with the ratio of two particular 
PWVD. Therefore, the Modified PWVD values at time t’ only 
depend on the PWVD values at the same time: 

J 
. e- jWr  d r  

MPWVh (Xi t’, W’)  = PWVh(x; t’, W )  s 
dw . S(W’ - G ( x ;  t’, w ) ) -  
27T (13) 

i ( t , w )  = t  (144 

From a practical point of view, this makes the computation 
of this modified version much faster and easier, since only one 
FFT is required (instead of two) and since both the PWVD and 
its modified version can be fully determined at every analysis 
time. This also makes the time marginal and the first order time 
moment of the MPWVD equal to the instantaneous power and 
to the instantaneous frequency: 

ifx(t) = (x(t)lejp=(t), cp:(t) = -(t) dPZ 
dt 

being the signal instantaneous frequency 
dw‘ 

MPWVh (z; t’, w’) - 
2T 

= J P w v h  ( x ; ~ ’ , w ) -  dw = l ~ ( t ’ ) 1 ~  
s 

27T 

no : INITIAL TIME. X,[k] : REAL SIGNAL WITH N x  POINTS. 

x[k] 
g[k] 

A : TIME INCREMENT : ANALYTIC SIGNAL OF XR. 
: SMOOTHING WINDOW OF ZM-1 POINTS. 

h[k] : SMOOTHING WINDOW OF 2N-1 POINTS. 

1 FOR A REAL SIGNAL Xll[k], COMPUTE FIRST ITS ANALYTIC SIGNAL X[k], EITHE 

‘f THE TIME DOMAIN, ADDING TO THE SIGNAL AN IMAGINARY PART EQUAL TO l’l 
[ILBERT TRANSFORM, OR IN THE FREQUENCY DOMAIN AS FOLLOWS : 
COMPUTE THE FOURIER TRANSFORM OF X, 

SUPPRESS THE AMPLITUDES BELONGING TO STRICnY NEGATIVE FREQUENCIES, 
DOUBLE THE AMPLITUDES OF STRICTLY POSITIVE FREQUENCIES, 

TAKE THE INVERSE FOURIER TRANSFORM. 

[) FOR A TIME-FREQUENCY REPRESENTATION ON NT ANALYSIS INSTANTS AN 

lm FREQUENCY BINS, CREATE A MATRIX MSPWV OF NT x NTFR ELEMENT! 
WIALIZED TO ZERO. 

[r OR EVERY ANALYSIS TIME n (ll= lh + i.A. i=O..NT-l) DO . ,  , - .  

1 ‘2mk 

N-l M - l  

SPWVgb[x;n.ml = k z l  h[kl (l=-hi+l c g [ l ]  x[n-l+kl.x*[n-I-k] e - K  

Fig. 2. MSPWVD computing algorithm. 

Like the MSPWVD, the MPWD retains all the properties of 
the PWVD except the bilinearity, which is lost for the benefit 
of perfectly localized chirps and impulses. 

B. The Reduced Inter$erence Distributions 
The “reduced interference distributions” (RID) [ 121, [13], 

[ 151 are particular smoothed Wigner-Ville distributions which 
have recently received a considerable attention. To derive their 
reassignment, we will first recall that expression (2) can also 
be written in the following two equivalent ways: 

TFR (2 ;  t ,  W )  = $ T L ( U ,  T ) z ( ~  - U + 7/2) JJ 
. x*(t  - u - ~ / 2 ) e - j ~ ~  d u d r  (17) 
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EXPRESSIONS OF THE K 
INTERFERENCE DISTRII 

TABLE I 
LNELS USED BY THE REASSIGNMENT OPERATORS. A: GENERAL CASE. B: REDUCED 
ITIONS, C, D: CHOI-WILLIAMS DISTRIBUTION. E, F: BORN-JORDAN DISTRIBUTION 

E 

E 
4, Q TL(U,T=O) = 0 

4, TL(u'T#o) = -L (T.f(U/T)+U.f(U/T)) 

4, TL(u"=o) = 0 

G 4, TL(U.'5fO) = IT I f(U/T) 1~13  

I e 0 8 TL(u'T=o) = 0 4,TL(u,T'o) = 0 

where A(z;  [, t )  denotes the narrow-band ambiguity function 
[361 and $TL ( U, T ) ,  $DL (2, T )  are the Fourier transforms of the 
smoothing kemel $TF in the Doppler-lag (DL) and time-lag 
(TL) plane: 

These expressions are often presented, because (17) clearly 
indicates how a time-frequency representation is computed for 
discrete-time signals [37], [38], and because the Doppler-lag 
plane is a fruitful starting point for the theoretical study of a 
representation [8], [20]. 

As shown by expressions (3a) and (3b), the reassignment 
operators use two particular Cohen's class members, TFRt 
and TFR:, defined by expression (2) and whose smoothing 
kemels $fTF(u, 0) and $ $ F ( ~ ,  0) are deduced from that of 
the reassigned representation: 

TFR' (z; t ,  w) 
TFR (z; t ,  w) 

i ( z ; t , w )  =t - With$$F(U, 0) = U $ T F ( U ,  0) 

These two kemels can also be expressed in the Doppler-lag 
and time-lag planes, provided that the smoothing kemel is 
differentiable. These expressions are presented in Table I, line 
a. The "reduced interference distributions" correspond then to 
the particular case where $DL([, T )  is a real even function of 
the product of the two variables: 

$DL(<, T) = F(57) 
withF(0) = 1 and F'(0)  = 0 

$TL(U, 7 = 0) = S(u) 

$TL(U,T # 0) = - - f ( u / ~ ) .  1 (20) i IT1 

The expressions of the corresponding $kF and $$F are pre- 
sented in Table I, line b. Furthermore, it can be demonstrated 
that the structure of these kemels allows the modified version 
of a RID to preserve time shifts and time scalings: 

if 

then T F R ( y ; t , w )  = T F R ( z ; Y , b w )  
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and t^(y;t,w) = b . i ( x ; y , b ~ )  + t l  

i j ( y ; t , w )  =b-'.b(x;-$,bw) t - t  

therefore MTFR ( y ;  t', w') = MTFR x; 3, bw' ( t ' b f  ) 
(22) 

As examples, the expressions of the two kernels q5kF and 
q5CF for the Choi-Williams [13] and the Born-Jordan [12] 
distributions (whose kernels are recalled in Table I, lines c 
and e)'are given in Table I, lines d and f, respectively. 

C. The Spectrogram 

Another classical solution is to take as a smoothing kernel 
the. Wigner-Ville distribution of some unit energy analysis 
window h(t) .  This leads to the well known spectrogram [l], 
[2], which is the squared modulus of the short-time Fourier 
transform (STFT): 

~ T F ( U ,  0) =wv (h; u , R )  
StL(x; t ,  w )  = ISTFTh (z; t ,  w)I2 withSTFTh (2; t ,  w )  

= /x(u) . h*(t - u)e-jwu du. (23) 

This representation is still extensively used in today's nonsta- 
tionary signal analysis, although its unseparable kernel makes 
the spreads of the time and frequency smoothings bound, and 
even opposed. 

The reassignment of this representation allows to run 
counter to its poor time-frequency concentration. In the 
spectrogram case, it can be shown (see the Appendix) that 

1073 

the reassignment operators as defined by (3a) and (3b) are 
also the coordinates of the center of gravity of the signal 
energy located in a bounded domain centered on ( t ,  U )  and 
measured by the Rihaczek distribution. These coordinates are 
furthermore easily computed by means of short-time Fourier 
transforms only (see the Appendix) in the equations at the 
bottom of this page. Its modified version 

iM&(z; t', w') = &(z; t ,  w)S(t' - i(z; t ,  w ) )  IJ 
(27) 

dw t ,  U ) )  dt-  
27T 

. S(W' - 

is also nonnegative, and retains all the properties of the 
spectrogram except the bilinearity, still lost for the benefit of 
perfectly localized chirps and impulses. 

Expressions (24a), (24b), (26a), (26b) are new in this paper. 
In the pioneering work of Kodera, Gendrin, and de Villedaq 
[33], only expressions (25a) and (25b) were used to present the 
reassignment of the spectrogram. Moreover, they showed in 
Appendix A of [34] that this method leads to a time-frequency 
representation using both the squared modulus and the phase 
of the short-time Fourier Transform, since the reassignment 
operators are equal to the instantaneous frequency and group 
delay of the bandpass filtered signal y( t )  = STFT (2; t ,  U ) :  

dR 11 U I WV (h;  U ,  0 )  WV (z; t - U ,  w - 0)  du- 
27T 

dR WV (h; U ,  0 )  WV (x; t - U ,  w - 0) du- 
27T 

U .  Ri*(h; U ,  R)Ri(z; t - U ,  w - 0)  du- 

ll i (x ; t ,w)  = t  - 

Ri*(h; U ,  R)Ri(s; t - U ,  w - R) du- d!'] 
27T 

dR 
2T 

/I R . WV (h;u ,  R) WV ( x ; t  - u,w - R) du- 

dR [/ W V ( h ; u , R ) W V ( x ; t  - u,w - R)du- 
27T 

STFTlh(2; t ,  W )  . STFTi(2; t ,  W )  { ISTFTh(x;t,w)I2 
= t  - R 

i j ( z ; t , w )  =w-- 

R . Ri*(h; U ,  O)Ri(x; t - U ,  w - R) du- 

d" } 
Ri*(h; U ,  R)Ri (x;  t - U ,  w - 0) du- 

27T 

withRi(x; t ,  w )  = z ( t )  1 X*(w)e-jwt 
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Generally, the STFT phase information is left unused when 
the spectrogram is formed, although it is known to carry a 
relevant description of the signal [35]. 

Although they are physically meaningful, expressions (28a) 
and (28b) do not lead to an efficient implementation of the 
reassignment operators, since for discrete time signals the 
derivatives must be replaced by first order differences, and 
since the phase of the short-time Fourier transform must be 
unwrapped. This probably explains why this method remained 
unused. On the other hand, expressions (26a) and (26b) lead 
to a reliable computation of the reassignment operators. 

D. The Margenau-Hill-Spectrogram and Pseudo 
Margenau-Hill Distributions 

Generalizing the spectrogram, the Margenau-Hill- 
Spectrogram distribution [ll],  [24] is the most general 
expression of a Cohen's class member deduced from linear 
time-frequency representations. It takes the form of a product 
of two short-time Fourier transforms, and also amounts to 
a separable time and frequency filtering of the Rihaczek 
distribution, just like the smoothed pseudo Wigner-Ville 
distribution does for the Wigner-Ville distribution: 

. R ~ ( x ;  t - U ,  w - 52) du- 
dR 2T I 

withKgh = h(u) . g* (u )  du. (30) J 
Nevertheless, this separable smoothing can easily achieve 
the nonnegativity property with two equal windows. The 
reassignment of this distribution will not be performed by 
using expressions (3a) and (3b), but by using the center of 

gravity of the neighboring Rihaczek distribution values. For 
two distinct windows, this point merges no longer to the one 
given by (3a) and (3b) as in the spectrogram case. Derivations 
similar to those presented in the Appendix show that it should 
be preferred, because it can be computed with two additional 
particular STFT, and because it corresponds to a separate use 
of the phase information of each STFT shown at the bottom 
of this page. 

It can then be shown easily that the modified version of this 
distribution built with these reassignment operators 

MMHS,,h (2; t', w') 

= 11 MHS,,h (2; t, w)6(t' - l(z; t ,  w ) )  

dw . S(W' - ;(E; t ,  U ) )  dt- 
2T 

(34) 

is not bilinear, satisfies the time and frequency shift invariance 
and the energy conservation property. It is also perfectly 
concentrated for impulses and sine waves (which are the only 
two classes of signals that the Rihaczek distribution perfectly 
localizes), but not for chirps. 

As an interesting particular case, the pseudo Margenau-Hill 
distribution proposed by Hippenstiel and de Oliveira [lo] 
corresponds to no time smoothing: 

d u )  = S(U) 

PMHh (z; t, W )  = R H ( 0 )  . Ri(z; t ,  w - 0)- 
2T 

= R{z(t)  . STFTi(z; t ,  w )  . e - j w t }  (35) 

with h(u) real and even, with h(0) = 1 and h'(0) = 0. Since 
there is no time direction filtering, the reassignment operators 

KG1 . g* (u )  2lr 1 H(R)  e ejnu . Ri(z; t - U ,  w - 0) du- 

K i l  . g*(u)  . H ( 0 )  . ejnu . Ri(z; t - U ,  w - n) du- 
2T 

i(.; t ,  w )  = t - 72 

STFT7, (z; t ,  W )  . STFI'Z (z; t ,  W )  
= t - R  

b 

2T 1 
dn 2T J 

R .  KG1 . g* (u )  . H(R)  . ejRu . Ri(s; t - U ,  w - R) du- 

K$ . g* (u )  . H(R) . ejnu . Ri(z; t - U ,  w - n) du- 
LJ (x ; t ,w )  = w - R  
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Fig. 3. Instantaneous frequency laws of the four signal components. 

(31a) and (31b) yield only a frequency displacement: 

This makes the implementation of the MPMHD easier than 
that of the MMHSD, and also leads to the preservation of 
both the time marginal and the first order time moment, as 
for the PWVD. In addition, this distribution also preserves the 
null values of the signal [lo], [ l l ] :  

if 3toz(to) = 0, then%’, 
MPMHh(z;to,w’) = PMHh(~;to,w’)  = 0. (38) 

Consequently, the MPMHD retains all the properties of the 
PMHD except bilinearity, lost for the benefit of perfectly 
localized sine waves and impulses. 

Iv .  APPLICATION TO SOME RME-SCALE REPRESENTATIONS 

A. General Case 

An interesting alternative for time-frequency analysis is 
provided by the recently proposed time-scale representations. 

For some signal processing applications, the scale concept 
seems more relevant than that of frequency. One way to obtain 
such representations is to perform an affine smoothing of the 
Wigner-Ville distrihtion, as proposed in [ 181: 

dR 
2lr 

. W V ( s ; t -  u ,R)du-  (39) 

where Ro is the central frequency of the frequency-direction 
bandpass filtering. Since for a pure sine wave of frequency 
w1, the time-scale distribution reaches its maximum for a = 
Ro/wl, it is also possible to display TSR (2 ;  t ,  a) in a time- 
frequency plane by the relationship a = Ro/w [181. 

This affine smoothing attenuates the cross-terms of the 
Wigner-Ville distribution and preserves now time shifts and 
time scalings, but of course also makes the signal components 
less localized. The reassignment of this representation is 
therefore also justified. 

The starting point of its determination is expression (39), 
which shows that the time-scale representation value at 
any point ( t , a  = Cl0/w) is the average of the weighted 
Wigner-Ville distribution values on the points (t - U, 0) 
located in a domain centered on ( t , w )  and bounded by the 
essential support of d T ~ .  In order to avoid the resultant 
signal components broadening while preserving the cross- 
terms attenuation, it seems once again appropriate to assign 
this average to the center of gravity of these energy measures, 
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whose coordinates are shown in (40) at the bottom of this page, 
rather than to the point (t ,  a = Ro/w) where it is computed. 
The value of the resulting modified time-scale representation 
on any point (t’, a’) is then the sum of all the representation 
values moved to this point: 

MTSR (2;  t’, a’) = (a’)2 TSR (2 ;  t ,  a)s(t’ - t^(x; t ,  U ) )  ss 
d t  . da 

a2 * 
.s(a’ - qx; t ,  U ) ) -  

As was done in Section 11, it can be shown easily that 
the modified time-scale representation is no longer bilinear, 
preserves time shifts and time scalings, distributes the signal 
energy on the whole time-scale plane, and is also perfectly 
localized for chirps and impulses. Three examples of particular 
smoothing kernels will be derived in the following. 

B. The AfJine Smoothed Pseudo Wigner-Ville Distribution 

So as to adjust the spreads of the time and frequency 
smoothings independently, it is quite natural to choose a 
separable smoothing kernel. This leads to the affine smoothed 
pseudo Wigner-Ville distribution (ASPWVD) proposed in 
[18]: 

da H(R0 - an)- = I s I4 

The modified version of this representation can easily be 
implemented, since the reassignment operators require only 
two additional particular ASPWVD: 

(43) . s(a‘ - qx; t ,  a))- d t  . da 
a2 

0 0  0 0  

a(x ; t , a )  a 
c j (x ; t ,a )  =y = - + j  

It also retains all the properties of the ASPWVD, except 
bilinearity, once again lost for the benefit of perfectly localized 
chirps and impulses. 

As a particular case, the affhe pseudo Wigner-Ville distri- 
bution corresponds to no time smoothing: 

~ T F ( u ,  R) = S ( u ) H ( R ) ,  satisfyingVR E W, 
da H(R0 - an)- = 1 / la1 

The reassignment operators 
yield a scale displacement 
additional APWVD: 

MAPWVh (2;  t’, U’) = 

leading to its modified version 
only, computed with only one 

// (a’)2APWVh (x ; t ’ ,a )  

Furthermore, this representation preserves the time marginal 
and also leads to an estimator of the instantaneous frequency: 

MAPWVh (x; t‘, a‘) - da‘ 
U” 

d R  // U .  4TF (:, Ro - a 0  WV (5; t - U ,  R) du- 
2T 

dR - an)  WV ( z ; t  - u,R)  du- 
2T 

1 i (s;  t ,  U )  = t - 

11 dTF 
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(49) 

C. The Scalogram 

In this class of time-scale distributions, taking as smoothing 
kernel the WVD of some window h(u) leads to the scalo- 
gram [16], [17]. This time-scale representation, which has 
recently become quite popular, is the squared modulus of the 
continuous wavelet transform: 

with CWTh (2;  t ,  a) = - &ll 

Compared to the spectrogram, the time-frequency resolution of 
the scalogram depends on frequency. At high frequencies, the 
scalogram reaches a high time resolution but a low frequency 
resolution, while at low frequencies, the scalogram reaches 
a high frequency resolution and a low time resolution. In 
every case, time and frequency resolutions are still bounded 
by the Heisenberg-Gabor inequality, and therefore can't be 
both taken as small as desired. 

This unsatisfactory trade-off legitimates the use of the 
reassignment method. As done in the Appendix for the spec- 
trogram, it can be shown that expressions (40a) and (40b) 
are equivalent to the center of gravity coordinates obtained by 
measuring the signal energy at one point ( t  , w ) by means of the 

Rihaczek distribution instead of the Wigner-Ville distribution. 
This equivalence yields an easy to compute expression of the 
reassignment operators, using only two particular scalograms, 
as shown at the bottom of this page. As for the spectrogram, 
the modified scalogram, defined by 

MSCh (z; t', U ' )  = ( u ' ) ~ S C ~ ( X ;  t ,  a)6(t' - t"(z; t ,  a ) )  /I 
dt da 

a2 
6(a' - q x ;  t ,  a))- (54) 

is also nonnegative, and retains all the properties of the 
scalogram except the bilinearity, once again lost for the benefit 
of perfectly localized chirps and impulses. 

V. NUMERICAL EXAMPLES 
In order to evaluate the benefits of the reassignment method 

in practical applications, a comparison of the experimental 
results provided by some time-frequency representations and 
their modified versions is shown in this section. The analyzed 
signal is a 256-point computer-generated signal made up of 
one sine wave component, one chirp component, one chirped 
Gaussian packet, and one signal with constant amplitude and 
an instantaneous frequency describing half a sine period. Fig. 3 
shows the instantaneous frequency laws of all the components, 
forming a time-frequency skeleton to which a time-frequency 
representation should be as near as possible. Fig. 4 shows the 
signal's WVD. The signal components are well localized, but 
the numerous high amplitude oscillating cross-terms make it 
hardly readable. Fig. 5(a) shows the PWVD (using a 79-point 
Gaussian window) reducing the cross-terms by a frequency 
direction smoothing. Its interpretation is much easier, but 
the signal components localization becomes coarser. Fig. 5(b) 
shows the modified PWVD. The improvement given by the 
reassignment method is obvious: all components (and also 
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Fig. 4. Wigner-Ville distribution of the signal. 

all cross-terms) are much better localized, and the sine wave 
and the chirp are even perfectly concentrated. Fig. 6(a) shows 
the SPWVD, adding a time-direction smoothing (through a 
39-point Gaussian window) to the previous representation. 
There are very few cross-terms, but the signal components 
concentration is still weaker. Its modified version (shown in 
Fig. 6(b)) is nearly ideal: all cross-terms are removed by the 
smoothings, and the signal components are strongly localized 
by the reassignment method. 

The same reasoning can also be applied to the Marge- 
nau-Hill distribution of the signal in Fig. 7. This representa- 
tion is hardly readable, since its signal components concentra- 
tion is worse [39] and its cross terms are twice as numerous as 
in the WVD. The pseudo Margenau-Hill distribution shown in 
Fig. 8(a) performs a frequency direction smoothing (by a 31- 
point Gaussian window). This representation allows an easier 
interpretation, but still keeps some cross-terms superimposed 
on the signal components. Its modified version (Fig. 8(b)) 
gives much better localized signal components, and is even 
perfectly concentrated for the sine wave. The Margenau-Hill 
spectrogram distribution in Fig. 9(a) performs thereafter a 
small time direction smoothing (1 5-point Gaussian window) 
suppressing the cross-terms. A great improvement is achieved 
by the use of the reassignment method, leading to the modified 
MHSD in Fig. 9(b): all cross-terms have been removed by a 
2D filtering, and the reassignment method makes the signal 
components strongly localized. If the time and frequency 
smoothing windows are equal, the representation becomes 
then the spectrogram (Fig. 10(a)), whose modified version 

(Fig. 10(b)) perfectly localizes the chirp component. It seems 
more interesting for this signal to use the modified spectrogram 
rather than the modified MHSD, though the spectrogram yields 
poor results compared to the MHSD. 

Finally, the next figures show time-scale representations. 
The affine pseudo Wigner-Ville distribution, shown on 
Fig. 1 l(a), performs a scale-invariant frequency direction 
smoothing of the WVD. The frequency-dependent signal 
concentration is clearly illustrated by the chirped component 
shape. Its modified version in Fig. ll(b) yields much more 
concentrated signal components, but still retains some cross- 
terms. An additional scale-invariant time direction smoothing 
removes nearly all cross-terms, yielding an ASPWVD 
(Fig. 12(a)) with less concentrated signal components, and 
a nearly ideal MASPWVD (Fig. 12(b)). Fig. 13(a) now shows 
a scalogram whose window length was chosen to provide the 
same frequency direction smoothing, but (consequently) an 
approximately two times longer time direction smoothing than 
the previous ASPWVD (see [18, appendix D]). All the WVD 
cross-terms have been removed, but the time resolution is 
really inadequate, especially at low frequencies. Its modified 
version is much easier to interpret, but the localization of 
the component with sinusoidal frequency modulation seems 
weaker than on the ASPWVD. 

It should also be noticed that all these figures use the same 
six gray-scale levels going logarithmically from the maximum 
value of the TFR to one hundredth of this maximum. Their 
readability has not been improved by a misleading display 
mode. 
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Fig. 5. (a) PWVD of the signal. h: 79-point Gaussian window. (h) Modified version of the PWVD shown in (a). 
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Fig. 6. (a) SPWVD of the signal. h: same as Fig. 5(a); g: 39-point Gaussian window. (b) Modified version of the SPWVD shown in (a). 
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VI. CONCLUSION 

In this paper, a new method for improving the readability 
of time-frequency and time-scale representations has been 
introduced. This method creates a modified version of a 
representation by moving the representation values away from 
where they are computed. These displacements depend on 
the signal and on the representation, forcing the bilinearity 
to be lost, but they are still consistent with many of the 
representation properties. A comparison of the basic prop- 
erties of the various representations studied here and their 
modified versions is presented in Table 11. In the spectro- 
gram and scalogram cases, the nonnegativity is preserved. 
Consequently, the reassignment method yields a whole class 
of time-frequency representations (the modified spectrograms) 
and a whole class of time-scale representations (the modified 
scalograms) which are nonnegative and perfectly localized 
for chirps and impulses. This should be emphasized, because 
to our knowledge there exists no other time-frequency and 
time-scale representations with the same properties. Another 
interesting point of this method is the ease of implementation. 
The two additional representations defined in (19a) and (19b) 
use the same signal values as the reassigned representation, 
and can therefore be computed at the same time. This requires 
in the worst cases two additional Fourier transforms, which is 
not really cumbersome. 

Finally, this method should not be considered as an alter- 
native to the representations with “signal matched’ smoothing 
kemels [26], but as a possible (or necessary) following stage. 

The experimental results reported in Section V show that the 
reassignment method provides a higher concentration in the 
time frequency plane, but of course does not remove the cross- 
terms. Therefore, the reassignment method must be associated 
to a properly chosen smoothing kernel to yield simultaneously 
a high concentration of the signal components and a cross- 
terms removal. The better the chosen (or designed) smoothing 
kernel of a representation fits the analyzed signal, the more 
readable its modified version. 

APPENDIX 
t EXPRESSIONS OF THE REASSIGNMENT 

OPERATORS FOR THE SPECTROGRAM 

From the equality: 

dR 
2n 

. W V ( 2 ; t - u , w - R ) d u -  

one can deduce that: 

U .  Ri*(h; U ,  R)  . R ~ ( x ;  t - U ,  w - R) du- 
2n 
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Fig. 8. (a) PMHD of the signal. h: 31-point Gaussian window. (b) Modified version of the PMHD shown in (a). 
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Fig. 9 (a) MHSD of the signal h same as Fig. 8; g 15-point Gaussian window (b) Modified version of the MHSD in (a) 
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Fig. 10. (a) Spectrogram of the signal. h:  31-point Gaussian window. (b) Modified version of the spectrogram shown in (a). 
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Fig. 1 1 .  (a) APWVD of the signal. h:  Gaussian window with Fa Th = 4.24. (b) Modified version of the APWVD shown in (a). 
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Fig. 12. (a) ASPWVD of the signal. h: same as Fig. 11;  g: Gaussian window with FO . Tg = 1.0. (b) Modified version of the ASPWVD shown in (a) 
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TABLE I1 
BASIC PROPERTIES OF THE REPRESENTATIONS AND OF THEIR MODIFIED VERSIONS 

= R{ - j  STFTh (z; t ,  w . STFTL, (2 ;  t ,  W }  

d 0  
= JJ’ R wv (h;  u, R) . wv (2 ;  t - u, w - 0) du- 27T 

since 

Zm {WV ( h  . V h ;  U ,  R)} 

= - R W V ( h ; u , R )  

Afterwards, the expressions (32a) and (32b) of the reassign- 
ment operators are derived from [35]: 

a 
-[STFTh at ( x ; ~ , w ) ]  

D 
d W  

+ j 7 [ 4 h ( x : t . w ) ] .  STFTh ( x : t . ( ~ )  

= -jtSTFTh (z; t ,  W )  + J STFTT/&(-I.; t ,  U). 
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